Parallel computation of sequential pixel updates in statistical tomographic reconstruction
نویسندگان
چکیده
While Bayesian methods can significantly improve the quality of tomographic reconstructions, they require the solution of large iterative optimization problems. Recent results indicate that the convergence of these optimization problems can be improved by using sequential pixel updates, or Gauss-Seidel iterations. However, Gauss-Seidel iterations may be perceived as less useful when parallel computing architectures are use. In this paper, we show that for degrees of parallelism of typical practical interest, the Gauss-Seidel iterations updates may be computed in parallel with little loss in convergence speed. In this case, the theoretical speed up of parallel implementations is nearly linear with the number of processors.
منابع مشابه
Parallelizable Bayesian tomography algorithms with rapid, guaranteed convergence
Bayesian tomographic reconstruction algorithms generally require the efficient optimization of a functional of many variables. In this setting, as well as in many other optimization tasks, functional substitution (FS) has been widely applied to simplify each step of the iterative process. The function to be minimized is replaced locally by an approximation having a more easily manipulated form,...
متن کاملA unified approach to statistical tomography using coordinate descent optimization
Over the past years there has been considerable interest in statistically optimal reconstruction of cross-sectional images from tomographic data. In particular, a variety of such algorithms have been proposed for maximum a posteriori (MAP) reconstruction from emission tomographic data. While MAP estimation requires the solution of an optimization problem, most existing reconstruction algorithms...
متن کاملProvably convergent coordinate descent in statistical tomographic reconstruction
Statistical tomographic reconstruction algorithms generally require the efficient optimization of a functional. A recent algorithm known as iterative coordinate descent with Newton-Raphson updates (ICD/NR) has been shown to be much more computationally efficient than indirect optimization approaches based on the EM algorithm. However, while the ICD/NR algorithm has experimentally been shown to ...
متن کاملConventional Voxel in Tomographic Reconstruction Based upon Plane-Integral Projections – Use It or Lose It?
Introduction: While the necessity of replacing voxels with blobs in conventional tomographic reconstruction based upon line-integrals is clear, it is not however well-investigated in plane- integral-based reconstruction. The problem is more challenging in convergent-plane projection reconstruction. In this work, we are aiming at utilizing blobs as alternative to voxels. <stron...
متن کاملAlgorithms for Non-Negatively Constrained Maximum Penalized Likelihood Reconstruction in Tomographic Imaging
Image reconstruction is a key component in many medical imaging modalities. The problem of image reconstruction can be viewed as a special inverse problem where the unknown image pixel intensities are estimated from the observed measurements. Since the measurements are usually noise contaminated, statistical reconstruction methods are preferred. In this paper we review some non-negatively const...
متن کامل